本文旨在揭示钠过渡金属氧化物阴极发展的基础原理和策略,主要强调了各种元素掺杂技术在引发阴离子氧化还原反应、提高阴极稳定性和提高阴极工作电压方面的作用。
在过去的20年中,全球能源消耗明显地增长,因此就需要开发高性能、可持续的储能系统,其中,钠离子电池(SIB)有着非常明显的优势。通过国际上不同学者的广泛研究,已经合成了一系列明确定义的用于 SIB 的阴极材料。该类材料主要由层状过渡金属氧化物和聚阴离子化合物组成,它们固有的低效率阻碍了SIB的商业化进展。因此,本文旨在揭示钠过渡金属氧化物阴极开发的基础原理和策略,希望为读者提供利用掺杂方法设计金属氧化钠阴极材料的新思路。
SIB的阴极材料主要遇到两大挑战:其一,钠过渡金属氧化物可分为O3、P3或P2三类,而P2和O3相(图1)经常发生一系列相变,进而导致晶体结构的显著收缩和层间距离的减小;其二,暴露在空气中的阴极具有湿度敏感性,很容易嵌入水、碳酸根等物质,在表面产生氧化钠或碳酸钠物质,导致电池循环过程中界面阻力增加。为了缓解以上问题,本文将重点介绍相关的掺杂策略,并进一步阐明掺杂机制。
非活性元素:通过在过渡金属层中引入没有d电子的非活性元素(如Li、Mg、Ti或Zn),能调节金属晶格组成,抑制Na/空位有序、促进Na扩散,并抑制P2-O2、O3-O3-P3-P3等相变的发生。如图2所示,学者们相继开展了Li、Mg、Al、Ti等非活性元素掺杂的研究,均实现了更好的电池性能。
活性元素:虽然掺杂非活性元素可以稳定结构,但由于它们的惰性化学性质,比容量会降低。因此,可采用活性元素进行掺杂,以达到非活性掺杂的目的,同时保持比容量。如图3所示,学者们相继开展了Cu、Fe、Co等活性元素掺杂的研究。Cu掺杂不但可以在高压充电时保证更多的Na离子保留在Na层中以改善P2-O2相变,还能保持过渡金属的有序来提高空气稳定性,同时降低容量。Fe掺杂可抑制P2-O2相变,还可参与到氧化还原反应,增大电池的容量。Co 取代会影响层间间距、相变和倍率容量,同时抑制Na+的有序过程、增强Na+的动力学,进而提高材料的循环稳定性。
碱金属位点掺杂可以通过增强相邻TMO层之间的静电内聚力并产生钉扎效应来提高结构稳定性,因而引起了人们的兴趣。如图4所示,学者们相继开展了Ca、Zn、K、Mg等活性元素掺杂的研究。对于Ca掺杂,Ca2+可扩散到Na+中,作为“支柱”来稳定结构,此外,过渡金属空位将产生非键合氧 2p 轨道,并且这些空位将显著改善阴离子氧化还原反应。掺杂Zn可增强两个相邻过渡金属层之间的静电内聚力,阻止活性材料沿a-b平面的碎裂,并限制了O2的产生。除了Ca和Zn掺杂,K离子由于其大半径,也被掺杂到Na棱柱位点中,通过掺杂钾,锂离子电池中多层阴极的循环能力和倍率性能明显地增强。而在Na位点掺杂Mg离子,可有效抑制从P2-O2的相变,从而为结构提供稳定性,特别是在广泛脱盐状态下,镁离子可当作支撑“支柱”,在高压电荷的影响下有效减轻特定方向的结构崩溃。
与阳离子掺杂相比,钠层过渡金属氧化物正极材料的阴离子掺杂研究不足。最近,学者们开展了在氧位点中掺杂非金属离子的研究,如图5所示,发现由于非贵金属离子的强电负性和较少的负价态,能够给大家提供卓越的电化学性能。其中F掺杂能改变氧的结合能,且F掺杂可增强过渡金属与氧的结合能,进而抑制Mn3+的John-Teller效应,促进Na+的扩散,而B掺杂可降低过渡金属层的平均有效半径,使结构更稳定,同时抑制Mn3+的John-Teller效应。
随着 SIB 阴极开发领域的进展,多离子共取代层状氧化物正在成为重要的研究途径。与单离子掺杂类似,研究人员已经探索了将各种阳离子和阴离子元素掺入阴极的方法。引入这些不同的元素,包括但不限于Fe、Mn、Li、Co、Cu、Mg、Ti和Ni,以利用它们的协同效应来增强阴极的电化学性能。
共掺杂在锰基层状氧化物正极材料中拥有非常良好效果,如图6所示,利用Co掺杂来消除Na/空位有序,同时利用Li掺杂来抑制P2-O2跃迁,于是Co/Li共掺杂可成功消除P2-O2相变。
除了Co/Li共掺杂,学者们还提出了一种涉及Cu/Li共掺杂的创新方法,可抑制P2-O2相变并消除Na/空位的有序结构。如图7(a-c)所示,电池在200次循环后仍保持约75%(~85 mAh/g)的容量保持率和99.6%的库仑效率,且几乎所有的氧化还原峰都相互对齐,形成具有高可逆性的固相,该固相有效抑制了P2-O2相变,从而在脱嵌过程中具有较高的可逆性和循环稳定性。此外,Mn/Co共掺杂也在开发新型P2型锰基阴极方面取得了重大进展,如图7(d-f)所示。
O3型阴极具备优秀能力的化学活性、简单的合成方法和比P2型阴极更大的充放电容量,因此是SIB的预期阴极材料。为了更好的提高O3型层状阴极的性能,Cu/Ti共掺杂、Ti/Zr共掺杂等策略被提出,如图8所示。其中Cu/Ti共掺杂可有效地抑制不需要的相变、明显提高空气稳定性,同时保持了原始结构和容量,而Ti/Zr共掺杂可带来更高的电子离域和混合熵,来提升结构稳定性。
本文侧重于使用掺杂来解决钠离子电池阴极现有的一些问题,最重要的包含阳离子和阴离子的单离子掺杂,以及多离子掺杂的策略和材料,如图9所示。具体而言,使用阳离子掺杂在防止不可逆相变方面很有效,从而显著改善层状氧化物的电化学性能;阴离子的参与促进了整个电池整体氧化还原反应中的部分电荷中和,该过程表现出快速动力学和长期稳定性;而多离子/共掺杂可以潜在解决抑制 Jahn-Teller 诱导的结构转变和抑制 Na离子有序过程的问题。
郑云,福州大学教授,长期从事固态电化学能源材料方面的工作,具体涉及固态锂金属电池、固体氧化物电池、质子交换膜燃料电池等。目前共发表SCI论文近70篇,出版学术专著2本,申请发明专利6项(其中2项已授权),主持/参与国家级科研项目多项。
由教育部主管、高等教育出版社主办的《前沿》(Frontiers)系列英文学术期刊,于2006年正式创刊,以网络版和印刷版向全球发行。系列期刊包括基础科学、生命科学、工程技术和人文社会科学四个主题,是我国覆盖学科最广泛的英文学术期刊群,其中12种被SCI收录,其他也被A&HCI、Ei、MEDLINE或相应学科国际权威检索系统收录,具有一定的国际学术影响力。系列期刊采用在线优先出版方式,保证文章以最快速度发表。